Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Neuroimage ; 290: 120562, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484917

RESUMEN

Functional magnetic resonance imaging (fMRI) is a powerful non-invasive method for studying brain function by analyzing blood oxygenation level-dependent (BOLD) signals. These signals arise from intricate interplays of deterministic and stochastic biological elements. Quantifying the stochastic part is challenging due to its reliance on assumptions about the deterministic segment. We present a methodological framework to estimate intrinsic stochastic brain dynamics in fMRI data without assuming deterministic dynamics. Our approach utilizes Approximate Entropy and its behavior in noisy series to identify and characterize dynamical noise in unobservable fMRI dynamics. Applied to extensive fMRI datasets (645 Cam-CAN, 1086 Human Connectome Project subjects), we explore lifelong maturation of intrinsic brain noise. Findings indicate 10% to 60% of fMRI signal power is due to intrinsic stochastic brain elements, varying by age. These components demonstrate a physiological role of neural noise which shows a distinct distributions across brain regions and increase linearly during maturation.


Asunto(s)
Encéfalo , Conectoma , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Entropía
2.
Front Neuroinform ; 18: 1346723, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380126

RESUMEN

Background: The willingness to trust predictions formulated by automatic algorithms is key in a wide range of domains. However, a vast number of deep architectures are only able to formulate predictions without associated uncertainty. Purpose: In this study, we propose a method to convert a standard neural network into a Bayesian neural network and estimate the variability of predictions by sampling different networks similar to the original one at each forward pass. Methods: We combine our method with a tunable rejection-based approach that employs only the fraction of the data, i.e., the share that the model can classify with an uncertainty below a user-set threshold. We test our model in a large cohort of brain images from patients with Alzheimer's disease and healthy controls, discriminating the former and latter classes based on morphometric images exclusively. Results: We demonstrate how combining estimated uncertainty with a rejection-based approach increases classification accuracy from 0.86 to 0.95 while retaining 75% of the test set. In addition, the model can select the cases to be recommended for, e.g., expert human evaluation due to excessive uncertainty. Importantly, our framework circumvents additional workload during the training phase by using our network "turned into Bayesian" to implicitly investigate the loss landscape in the neighborhood of each test sample in order to determine the reliability of the predictions. Conclusion: We believe that being able to estimate the uncertainty of a prediction, along with tools that can modulate the behavior of the network to a degree of confidence that the user is informed about (and comfortable with), can represent a crucial step in the direction of user compliance and easier integration of deep learning tools into everyday tasks currently performed by human operators.

3.
Elife ; 132024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38192199

RESUMEN

Axonal degeneration is a central pathological feature of multiple sclerosis and is closely associated with irreversible clinical disability. Current noninvasive methods to detect axonal damage in vivo are limited in their specificity and clinical applicability, and by the lack of proper validation. We aimed to validate an MRI framework based on multicompartment modeling of the diffusion signal (AxCaliber) in rats in the presence of axonal pathology, achieved through injection of a neurotoxin damaging the neuronal terminal of axons. We then applied the same MRI protocol to map axonal integrity in the brain of multiple sclerosis relapsing-remitting patients and age-matched healthy controls. AxCaliber is sensitive to acute axonal damage in rats, as demonstrated by a significant increase in the mean axonal caliber along the targeted tract, which correlated with neurofilament staining. Electron microscopy confirmed that increased mean axonal diameter is associated with acute axonal pathology. In humans with multiple sclerosis, we uncovered a diffuse increase in mean axonal caliber in most areas of the normal-appearing white matter, preferentially affecting patients with short disease duration. Our results demonstrate that MRI-based axonal diameter mapping is a sensitive and specific imaging biomarker that links noninvasive imaging contrasts with the underlying biological substrate, uncovering generalized axonal damage in multiple sclerosis as an early event.


Asunto(s)
Esclerosis Múltiple , Humanos , Animales , Ratas , Esclerosis Múltiple/diagnóstico por imagen , Axones , Imagen por Resonancia Magnética , Encéfalo , Difusión
4.
Soc Cogn Affect Neurosci ; 19(1)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38287706

RESUMEN

Previous research on the neurobiological bases of resilience in youth has largely used categorical definitions of resilience and voxel-based morphometry methods that assess gray matter volume. However, it is important to consider brain structure more broadly as different cortical properties have distinct developmental trajectories. To address these limitations, we used surface-based morphometry and data-driven, continuous resilience scores to examine associations between resilience and cortical structure. Structural MRI data from 286 youths (Mage = 13.6 years, 51% female) who took part in the European multi-site FemNAT-CD study were pre-processed and analyzed using surface-based morphometry. Continuous resilience scores were derived for each participant based on adversity exposure and levels of psychopathology using the residual regression method. Vertex-wise analyses assessed for correlations between resilience scores and cortical thickness, surface area, gyrification and volume. Resilience scores were positively associated with right lateral occipital surface area and right superior frontal gyrification and negatively correlated with left inferior temporal surface area. Moreover, sex-by-resilience interactions were observed for gyrification in frontal and temporal regions. Our findings extend previous research by revealing that resilience is related to surface area and gyrification in frontal, occipital and temporal regions that are implicated in emotion regulation and face or object recognition.


Asunto(s)
Resiliencia Psicológica , Adolescente , Humanos , Femenino , Masculino , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Lóbulo Temporal , Imagen por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen
5.
Pain ; 165(5): 1121-1130, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38015622

RESUMEN

ABSTRACT: Although inflammation is known to play a role in knee osteoarthritis (KOA), inflammation-specific imaging is not routinely performed. In this article, we evaluate the role of joint inflammation, measured using [ 11 C]-PBR28, a radioligand for the inflammatory marker 18-kDa translocator protein (TSPO), in KOA. Twenty-one KOA patients and 11 healthy controls (HC) underwent positron emission tomography/magnetic resonance imaging (PET/MRI) knee imaging with the TSPO ligand [ 11 C]-PBR28. Standardized uptake values were extracted from regions-of-interest (ROIs) semiautomatically segmented from MRI data, and compared across groups (HC, KOA) and subgroups (unilateral/bilateral KOA symptoms), across knees (most vs least painful), and against clinical variables (eg, pain and Kellgren-Lawrence [KL] grades). Overall, KOA patients demonstrated elevated [ 11 C]-PBR28 binding across all knee ROIs, compared with HC (all P 's < 0.005). Specifically, PET signal was significantly elevated in both knees in patients with bilateral KOA symptoms (both P 's < 0.01), and in the symptomatic knee ( P < 0.05), but not the asymptomatic knee ( P = 0.95) of patients with unilateral KOA symptoms. Positron emission tomography signal was higher in the most vs least painful knee ( P < 0.001), and the difference in pain ratings across knees was proportional to the difference in PET signal ( r = 0.74, P < 0.001). Kellgren-Lawrence grades neither correlated with PET signal (left knee r = 0.32, P = 0.19; right knee r = 0.18, P = 0.45) nor pain ( r = 0.39, P = 0.07). The current results support further exploration of [ 11 C]-PBR28 PET signal as an imaging marker candidate for KOA and a link between joint inflammation and osteoarthritis-related pain severity.


Asunto(s)
Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Articulación de la Rodilla/metabolismo , Inflamación/diagnóstico por imagen , Dolor , Receptores de GABA/metabolismo
6.
Magn Reson Med ; 91(5): 1803-1821, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38115695

RESUMEN

PURPOSE: K trans $$ {K}^{\mathrm{trans}} $$ has often been proposed as a quantitative imaging biomarker for diagnosis, prognosis, and treatment response assessment for various tumors. None of the many software tools for K trans $$ {K}^{\mathrm{trans}} $$ quantification are standardized. The ISMRM Open Science Initiative for Perfusion Imaging-Dynamic Contrast-Enhanced (OSIPI-DCE) challenge was designed to benchmark methods to better help the efforts to standardize K trans $$ {K}^{\mathrm{trans}} $$ measurement. METHODS: A framework was created to evaluate K trans $$ {K}^{\mathrm{trans}} $$ values produced by DCE-MRI analysis pipelines to enable benchmarking. The perfusion MRI community was invited to apply their pipelines for K trans $$ {K}^{\mathrm{trans}} $$ quantification in glioblastoma from clinical and synthetic patients. Submissions were required to include the entrants' K trans $$ {K}^{\mathrm{trans}} $$ values, the applied software, and a standard operating procedure. These were evaluated using the proposed OSIP I gold $$ \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} $$ score defined with accuracy, repeatability, and reproducibility components. RESULTS: Across the 10 received submissions, the OSIP I gold $$ \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} $$ score ranged from 28% to 78% with a 59% median. The accuracy, repeatability, and reproducibility scores ranged from 0.54 to 0.92, 0.64 to 0.86, and 0.65 to 1.00, respectively (0-1 = lowest-highest). Manual arterial input function selection markedly affected the reproducibility and showed greater variability in K trans $$ {K}^{\mathrm{trans}} $$ analysis than automated methods. Furthermore, provision of a detailed standard operating procedure was critical for higher reproducibility. CONCLUSIONS: This study reports results from the OSIPI-DCE challenge and highlights the high inter-software variability within K trans $$ {K}^{\mathrm{trans}} $$ estimation, providing a framework for ongoing benchmarking against the scores presented. Through this challenge, the participating teams were ranked based on the performance of their software tools in the particular setting of this challenge. In a real-world clinical setting, many of these tools may perform differently with different benchmarking methodology.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Humanos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Programas Informáticos , Algoritmos
7.
Neural Netw ; 171: 215-228, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38096650

RESUMEN

This study delves into the crucial aspect of network topology in artificial neural networks (NNs) and its impact on model performance. Addressing the need to comprehend how network structures influence learning capabilities, the research contrasts traditional multilayer perceptrons (MLPs) with models built on various complex topologies using novel network generation techniques. Drawing insights from synthetic datasets, the study reveals the remarkable accuracy of complex NNs, particularly in high-difficulty scenarios, outperforming MLPs. Our exploration extends to real-world datasets, highlighting the task-specific nature of optimal network topologies and unveiling trade-offs, including increased computational demands and reduced robustness to graph damage in complex NNs compared to MLPs. This research underscores the pivotal role of complex topologies in addressing challenging learning tasks. However, it also signals the necessity for deeper insights into the complex interplay among topological attributes influencing NN performance. By shedding light on the advantages and limitations of complex topologies, this study provides valuable guidance for practitioners and paves the way for future endeavors to design more efficient and adaptable neural architectures across various applications.


Asunto(s)
Aprendizaje , Redes Neurales de la Computación , Predicción
8.
Alzheimers Res Ther ; 15(1): 211, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057937

RESUMEN

BACKGROUND: Identifying individuals with mild cognitive impairment (MCI) who are likely to progress to Alzheimer's disease and related dementia disorders (ADRD) would facilitate the development of individualized prevention plans. We investigated the association between MCI and comorbidities of ADRD. We examined the predictive potential of these comorbidities for MCI risk determination using a machine learning algorithm. METHODS: Using a retrospective matched case-control design, 5185 MCI and 15,555 non-MCI individuals aged ≥50 years were identified from MarketScan databases. Predictive models included ADRD comorbidities, age, and sex. RESULTS: Associations between 25 ADRD comorbidities and MCI were significant but weakened with increasing age groups. The odds ratios (MCI vs non-MCI) in 50-64, 65-79, and ≥ 80 years, respectively, for depression (4.4, 3.1, 2.9) and stroke/transient ischemic attack (6.4, 3.0, 2.1). The predictive potential decreased with older age groups, with ROC-AUCs 0.75, 0.70, and 0.66 respectively. Certain comorbidities were age-specific predictors. CONCLUSIONS: The comorbidity burden of MCI relative to non-MCI is age-dependent. A model based on comorbidities alone predicted an MCI diagnosis with reasonable accuracy.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Estudios Retrospectivos , Sensibilidad y Especificidad , Progresión de la Enfermedad , Enfermedad de Alzheimer/diagnóstico , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/diagnóstico , Comorbilidad , Factores de Edad
9.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894766

RESUMEN

Multisystem inflammatory syndrome in children (MIS-C) is a postinfectious sequela of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with some clinical features overlapping with Kawasaki disease (KD). Our research group and others have highlighted that the spike protein of SARS-CoV-2 can trigger the activation of human endogenous retroviruses (HERVs), which in turn induces inflammatory and immune reactions, suggesting HERVs as contributing factors in COVID-19 immunopathology. With the aim to identify new factors involved in the processes underlying KD and MIS-C, we analysed the transcriptional levels of HERVs, HERV-related genes, and immune mediators in children during the acute and subacute phases compared with COVID-19 paediatric patients and healthy controls. The results showed higher levels of HERV-W, HERV-K, Syn-1, and ASCT-1/2 in KD, MIS-C, and COV patients, while higher levels of Syn-2 and MFSD2A were found only in MIS-C patients. Moreover, KD and MIS-C shared the dysregulation of several inflammatory and regulatory cytokines. Interestingly, in MIS-C patients, negative correlations have been found between HERV-W and IL-10 and between Syn-2 and IL-10, while positive correlations have been found between HERV-K and IL-10. In addition, HERV-W expression positively correlated with the C-reactive protein. This pilot study supports the role of HERVs in inflammatory diseases, suggesting their interplay with the immune system in this setting. The elevated expression of Syn-2 and MFSD2A seems to be a distinctive trait of MIS-C patients, allowing to distinguish them from KD ones. The understanding of pathological mechanisms can lead to the best available treatment for these two diseases, limiting complications and serious outcomes.


Asunto(s)
COVID-19 , Retrovirus Endógenos , Síndrome Mucocutáneo Linfonodular , Humanos , Niño , SARS-CoV-2/genética , COVID-19/genética , Retrovirus Endógenos/genética , Interleucina-10/genética , Síndrome Mucocutáneo Linfonodular/genética , Proyectos Piloto
10.
Brain Stimul ; 16(6): 1557-1565, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37827358

RESUMEN

BACKGROUND: The autonomic response to transcutaneous auricular vagus nerve stimulation (taVNS) has been linked to the engagement of brainstem circuitry modulating autonomic outflow. However, the physiological mechanisms supporting such efferent vagal responses are not well understood, particularly in humans. HYPOTHESIS: We present a paradigm for estimating directional brain-heart interactions in response to taVNS. We propose that our approach is able to identify causal links between the activity of brainstem nuclei involved in autonomic control and cardiovagal outflow. METHODS: We adopt an approach based on a recent reformulation of Granger causality that includes permutation-based, nonparametric statistics. The method is applied to ultrahigh field (7T) functional magnetic resonance imaging (fMRI) data collected on healthy subjects during taVNS. RESULTS: Our framework identified taVNS-evoked functional brainstem responses with superior sensitivity compared to prior conventional approaches, confirming causal links between taVNS stimulation and fMRI response in the nucleus tractus solitarii (NTS). Furthermore, our causal approach elucidated potential mechanisms by which information is relayed between brainstem nuclei and cardiovagal, i.e., high-frequency heart rate variability, in response to taVNS. Our findings revealed that key brainstem nuclei, known from animal models to be involved in cardiovascular control, exert a causal influence on taVNS-induced cardiovagal outflow in humans. CONCLUSION: Our causal approach allowed us to noninvasively evaluate directional interactions between fMRI BOLD signals from brainstem nuclei and cardiovagal outflow.


Asunto(s)
Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Animales , Humanos , Estimulación del Nervio Vago/métodos , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/fisiología , Estimulación Eléctrica Transcutánea del Nervio/métodos , Nervio Vago/fisiología , Núcleo Solitario
11.
Hum Brain Mapp ; 44(15): 5113-5124, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37647214

RESUMEN

Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) have been previously used to explore white matter related to human immunodeficiency virus (HIV) infection. While DTI and DKI suffer from low specificity, the Combined Hindered and Restricted Model of Diffusion (CHARMED) provides additional microstructural specificity. We used these three models to evaluate microstructural differences between 35 HIV-positive patients without neurological impairment and 20 healthy controls who underwent diffusion-weighted imaging using three b-values. While significant group effects were found in all diffusion metrics, CHARMED and DKI analyses uncovered wider involvement (80% vs. 20%) of all white matter tracts in HIV infection compared with DTI. In restricted fraction (FR) analysis, we found significant differences in the left corticospinal tract, middle cerebellar peduncle, right inferior cerebellar peduncle, right corticospinal tract, splenium of the corpus callosum, left superior cerebellar peduncle, left superior cerebellar peduncle, pontine crossing tract, left posterior limb of the internal capsule, and left/right medial lemniscus. These are involved in language, motor, equilibrium, behavior, and proprioception, supporting the functional integration that is frequently impaired in HIV-positivity. Additionally, we employed a machine learning algorithm (XGBoost) to discriminate HIV-positive patients from healthy controls using DTI and CHARMED metrics on an ROIwise basis, and unique contributions to this discrimination were examined using Shapley Explanation values. The CHARMED and DKI estimates produced the best performance. Our results suggest that biophysical multishell imaging, combining additional sensitivity and built-in specificity, provides further information about the brain microstructural changes in multimodal areas involved in attentive, emotional and memory networks often impaired in HIV patients.


Asunto(s)
Imagen de Difusión Tensora , Infecciones por VIH , Sustancia Blanca , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Infecciones por VIH/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
12.
Dev Psychopathol ; 35(5): 2302-2314, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37424502

RESUMEN

There is increasing evidence that resilience in youth may have a neurobiological basis. However, the existing literature lacks a consistent way of operationalizing resilience, often relying on arbitrary judgments or narrow definitions (e.g., not developing PTSD) to classify individuals as resilient. Therefore, this study used data-driven, continuous resilience scores based on adversity and psychopathology to investigate associations between resilience and brain structure in youth. Structural MRI data from 298 youth aged 9-18 years (Mage = 13.51; 51% female) who participated in the European multisite FemNAT-CD study were preprocessed using SPM12 and analyzed using voxel-based morphometry. Resilience scores were derived by regressing data on adversity exposure against current/lifetime psychopathology and quantifying each individual's distance from the regression line. General linear models tested for associations between resilience and gray matter volume (GMV) and examined whether associations between resilience and GMV differed by sex. Resilience was positively correlated with GMV in the right inferior frontal and medial frontal gyri. Sex-by-resilience interactions were observed in the middle temporal and middle frontal gyri. These findings demonstrate that resilience in youth is associated with volume in brain regions implicated in executive functioning, emotion regulation, and attention. Our results also provide evidence for sex differences in the neurobiology of resilience.


Asunto(s)
Resiliencia Psicológica , Adolescente , Humanos , Femenino , Masculino , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Corteza Prefrontal/patología , Lóbulo Frontal/patología , Imagen por Resonancia Magnética/métodos
13.
Front Microbiol ; 14: 1155624, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37283924

RESUMEN

Introduction: Our research group and others demonstrated the implication of the human endogenous retroviruses (HERVs) in SARS-CoV-2 infection and their association with disease progression, suggesting HERVs as contributing factors in COVID-19 immunopathology. To identify early predictive biomarkers of the COVID-19 severity, we analyzed the expression of HERVs and inflammatory mediators in SARS-CoV-2-positive and -negative nasopharyngeal/oropharyngeal swabs with respect to biochemical parameters and clinical outcome. Methods: Residuals of swab samples (20 SARS-CoV-2-negative and 43 SARS-CoV-2-positive) were collected during the first wave of the pandemic and expression levels of HERVs and inflammatory mediators were analyzed by qRT-Real time PCR. Results: The results obtained show that infection with SARS-CoV-2 resulted in a general increase in the expression of HERVs and mediators of the immune response. In particular, SARS-CoV-2 infection is associated with increased expression of HERV-K and HERV-W, IL-1ß, IL-6, IL-17, TNF-α, MCP-1, INF-γ, TLR-3, and TLR-7, while lower levels of IL-10, IFN-α, IFN-ß, and TLR-4 were found in individuals who underwent hospitalization. Moreover, higher expression of HERV-W, IL-1ß, IL-6, IFN-α, and IFN-ß reflected the respiratory outcome of patients during hospitalization. Interestingly, a machine learning model was able to classify hospitalized vs not hospitalized patients with good accuracy based on the expression levels of HERV-K, HERV-W, IL-6, TNF-a, TLR-3, TLR-7, and the N gene of SARS-CoV-2. These latest biomarkers also correlated with parameters of coagulation and inflammation. Discussion: Overall, the present results suggest HERVs as contributing elements in COVID-19 and early genomic biomarkers to predict COVID-19 severity and disease outcome.

14.
J Pers Med ; 13(6)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37373993

RESUMEN

Traditional imaging techniques for breast cancer (BC) diagnosis and prediction, such as X-rays and magnetic resonance imaging (MRI), demonstrate varying sensitivity and specificity due to clinical and technological factors. Consequently, positron emission tomography (PET), capable of detecting abnormal metabolic activity, has emerged as a more effective tool, providing critical quantitative and qualitative tumor-related metabolic information. This study leverages a public clinical dataset of dynamic 18F-Fluorothymidine (FLT) PET scans from BC patients, extending conventional static radiomics methods to the time domain-termed as 'Dynomics'. Radiomic features were extracted from both static and dynamic PET images on lesion and reference tissue masks. The extracted features were used to train an XGBoost model for classifying tumor versus reference tissue and complete versus partial responders to neoadjuvant chemotherapy. The results underscored the superiority of dynamic and static radiomics over standard PET imaging, achieving accuracy of 94% in tumor tissue classification. Notably, in predicting BC prognosis, dynomics delivered the highest performance, achieving accuracy of 86%, thereby outperforming both static radiomics and standard PET data. This study illustrates the enhanced clinical utility of dynomics in yielding more precise and reliable information for BC diagnosis and prognosis, paving the way for improved treatment strategies.

15.
Front Neurol ; 14: 1163005, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251237

RESUMEN

Agoraphobia is a visuo-vestibular-spatial disorder that may involve dysfunction of the vestibular network, which includes the insular and limbic cortex. We sought to study the neural correlates of this disorder in an individual who developed agoraphobia after surgical removal of a high-grade glioma located in the right parietal lobe, by assessing pre- and post-surgery connectivities in the vestibular network. The patient underwent surgical resection of the glioma located within the right supramarginal gyrus. The resection interested also portions of the superior and inferior parietal lobe. Structural and functional connectivities were assessed through magnetic resonance imaging before and 5 and 7 months after surgery. Connectivity analyses focused on a network comprising 142 spherical regions of interest (4 mm radius) associated with the vestibular cortex: 77 in the left and 65 in the right hemisphere (excluding lesioned regions). Tractography for diffusion-weighted structural data and correlation between time series for functional resting-state data were calculated for each pair of regions in order to build weighted connectivity matrices. Graph theory was applied to assess post-surgery changes in network measures, such as strength, clustering coefficient, and local efficiency. Structural connectomes after surgery showed a decrease of strength in the preserved ventral portion of the supramarginal gyrus (PFcm) and in a high order visual motion area in the right middle temporal gyrus (37dl), and decrease of the clustering coefficient and of the local efficiency in several areas of the limbic, insular cortex, parietal and frontal cortex, indicating general disconnection of the vestibular network. Functional connectivity analysis showed both a decrease in connectivity metrics, mainly in high-order visual areas and in the parietal cortex, and an increase in connectivity metrics, mainly in the precuneus, parietal and frontal opercula, limbic, and insular cortex. This post-surgery reorganization of the vestibular network is compatible with altered processing of visuo-vestibular-spatial information, yielding agoraphobia symptoms. Specifically, post-surgical functional increases of clustering coefficient and local efficiency in the anterior insula and in the cingulate cortex might indicate a more predominant role of these areas within the vestibular network, which could be predictive of the fear and avoiding behavior characterizing agoraphobia.

16.
Comput Methods Programs Biomed ; 236: 107550, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37086584

RESUMEN

BACKGROUND: Explainable artificial intelligence (XAI) is a technology that can enhance trust in mental state classifications by providing explanations for the reasoning behind artificial intelligence (AI) models outputs, especially for high-dimensional and highly-correlated brain signals. Feature importance and counterfactual explanations are two common approaches to generate these explanations, but both have drawbacks. While feature importance methods, such as shapley additive explanations (SHAP), can be computationally expensive and sensitive to feature correlation, counterfactual explanations only explain a single outcome instead of the entire model. METHODS: To overcome these limitations, we propose a new procedure for computing global feature importance that involves aggregating local counterfactual explanations. This approach is specifically tailored to fMRI signals and is based on the hypothesis that instances close to the decision boundary and their counterfactuals mainly differ in the features identified as most important for the downstream classification task. We refer to this proposed feature importance measure as Boundary Crossing Solo Ratio (BoCSoR), since it quantifies the frequency with which a change in each feature in isolation leads to a change in classification outcome, i.e., the crossing of the model's decision boundary. RESULTS AND CONCLUSIONS: Experimental results on synthetic data and real publicly available fMRI data from the Human Connect project show that the proposed BoCSoR measure is more robust to feature correlation and less computationally expensive than state-of-the-art methods. Additionally, it is equally effective in providing an explanation for the behavior of any AI model for brain signals. These properties are crucial for medical decision support systems, where many different features are often extracted from the same physiological measures and a gold standard is absent. Consequently, computing feature importance may become computationally expensive, and there may be a high probability of mutual correlation among features, leading to unreliable results from state-of-the-art XAI methods.


Asunto(s)
Inteligencia Artificial , Encéfalo , Humanos , Encéfalo/diagnóstico por imagen , Tecnología
17.
Brain Behav ; 13(5): e2839, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36989125

RESUMEN

INTRODUCTION: The functional connectivity patterns in the brain are highly heritable; however, it is unclear how genetic factors influence the directionality of such "information flows." Studying the "directionality" of the brain functional connectivity and assessing how heritability modulates it can improve our understanding of the human connectome. METHODS: Here, we investigated the heritability of "directed" functional connections using a state-space formulation of Granger causality (GC), in conjunction with blind deconvolution methods accounting for local variability in the hemodynamic response function. Such GC implementation is ideal to explore the directionality of functional interactions across a large number of networks. Resting-state functional magnetic resonance imaging data were drawn from the Human Connectome Project (total n = 898 participants). To add robustness to our findings, the dataset was randomly split into a "discovery" and a "replication" sample (each with n = 449 participants). The two cohorts were carefully matched in terms of demographic variables and other confounding factors (e.g., education). The effect of shared environment was also modeled. RESULTS: The parieto- and prefronto-cerebellar, parieto-prefrontal, and posterior-cingulate to hippocampus connections showed the highest and most replicable heritability effects with little influence by shared environment. In contrast, shared environmental factors significantly affected the visuo-parietal and sensory-motor directed connectivity. CONCLUSION: We suggest a robust role of heritability in influencing the directed connectivity of some cortico-subcortical circuits implicated in cognition. Further studies, for example using task-based fMRI and GC, are warranted to confirm the asymmetric effects of genetic factors on the functional connectivity within cognitive networks and their role in supporting executive functions and learning.


Asunto(s)
Conectoma , Humanos , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Cognición/fisiología , Función Ejecutiva , Red Nerviosa
18.
Artículo en Inglés | MEDLINE | ID: mdl-36925341

RESUMEN

BACKGROUND: Childhood maltreatment is common in youths with conduct disorder (CD), and both CD and maltreatment have been linked to neuroanatomical alterations. Nonetheless, our understanding of the contribution of maltreatment to the neuroanatomical alterations observed in CD remains limited. We tested the applicability of the ecophenotype model to CD, which holds that maltreatment-related psychopathology is (neurobiologically) distinct from psychopathology without maltreatment. METHODS: Surface-based morphometry was used to investigate cortical volume, thickness, surface area, and gyrification in a mixed-sex sample of participants with CD (n = 114) and healthy control subjects (HCs) (n = 146), ages 9 to 18 years. Using vertexwise general linear models adjusted for sex, age, total intracranial volume, and site, the control group was compared with the overall CD group and the CD subgroups with (n = 49) versus without (n = 65) maltreatment (assessed by the Children's Bad Experiences interview). These subgroups were also directly compared. RESULTS: The overall CD group showed lower cortical thickness in the right inferior frontal gyrus. CD youths with a history of maltreatment showed more widespread structural alterations relative to HCs, comprising lower thickness, volume, and gyrification in inferior and middle frontal regions. Conversely, CD youths with no history of maltreatment only showed greater left superior temporal gyrus folding relative to HCs. When contrasting the CD subgroups, those with maltreatment displayed lower right superior temporal gyrus volume, right precentral gyrus surface area, and gyrification in frontal, temporal, and parietal regions. CONCLUSIONS: Consistent with the ecophenotype model, findings indicated that CD youths with versus without maltreatment differ neurobiologically. This highlights the importance of considering maltreatment history in neuroimaging studies of CD and other disorders.


Asunto(s)
Maltrato a los Niños , Trastorno de la Conducta , Adolescente , Niño , Humanos , Imagen por Resonancia Magnética/métodos , Lóbulo Temporal/patología , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/patología
19.
Brain Sci ; 13(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36831740

RESUMEN

To date, the relationship between central hallmarks of multiple sclerosis (MS), such as white matter (WM)/cortical demyelinated lesions and cortical gray matter atrophy, remains unclear. We investigated the interplay between cortical atrophy and individual lesion-type patterns that have recently emerged as new radiological markers of MS disease progression. We employed a machine learning model to predict mean cortical thinning in whole-brain and single hemispheres in 150 cortical regions using demographic and lesion-related characteristics, evaluated via an ultrahigh field (7 Tesla) MRI. We found that (i) volume and rimless (i.e., without a "rim" of iron-laden immune cells) WM lesions, patient age, and volume of intracortical lesions have the most predictive power; (ii) WM lesions are more important for prediction when their load is small, while cortical lesion load becomes more important as it increases; (iii) WM lesions play a greater role in the progression of atrophy during the latest stages of the disease. Our results highlight the intricacy of MS pathology across the whole brain. In turn, this calls for multivariate statistical analyses and mechanistic modeling techniques to understand the etiopathogenesis of lesions.

20.
Trends Neurosci ; 46(3): 176-198, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36642626

RESUMEN

Neurological and psychiatric diseases have high degrees of genetic and pathophysiological heterogeneity, irrespective of clinical manifestations. Traditional medical paradigms have focused on late-stage syndromic aspects of these diseases, with little consideration of the underlying biology. Advances in disease modeling and methodological design have paved the way for the development of precision medicine (PM), an established concept in oncology with growing attention from other medical specialties. We propose a PM architecture for central nervous system diseases built on four converging pillars: multimodal biomarkers, systems medicine, digital health technologies, and data science. We discuss Alzheimer's disease (AD), an area of significant unmet medical need, as a case-in-point for the proposed framework. AD can be seen as one of the most advanced PM-oriented disease models and as a compelling catalyzer towards PM-oriented neuroscience drug development and advanced healthcare practice.


Asunto(s)
Enfermedad de Alzheimer , Neurología , Neurociencias , Psiquiatría , Humanos , Medicina de Precisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...